3206

BLEI(II)-PHOSPHITE*

M.EBERT und L.KAVAN

Institut für anorganische Chemie, Karlsuniversität, 128 40 Prag 2

Eingegangen am 21. November 1975

Prof. Dr S. Škramovský zum 75. Geburtstag gewidmet.

Wie durch die Löslichkeitsuntersuchung im ternären System PbHPO₃-H₃PO₃-H₂O bei 25°C festgestellt wurde, entsteht im System als einzige Verbindung inkongruent lösliches Blei(II)-dihydrogendiorthophosphit PbH₄P₂O₆. Die Phosphite PbHPO₃, PbH₄P₂O₆ und das durch thermische Zersetzung von Dihydrogendiorthophosphit gewonnene Blei(II)-diphosphit PbH₂. P₂O₅ wurden mittels Pulverröntgenographie, thermische Analyse und Infrarotmolekülspektroskopie untersucht. In der Verbindung PbH₄P₂O₆ werden starke Wasserstoffbindungen von der Länge 0,255–0,260 nm zwischen den Hydroxylgruppen und den Sauerstoffatomen gebildet, die an zwei verschiedene Phosphoratome gebunden sind. Im Infrarotmolekülspektrum des PbH₂P₂O₅ wurden die Absorptionsbanden bei 670 und 915 cm⁻¹ der symmetrischen und antisymmetrischen Valenzschwingung der POP-Gruppe zugeordnet.

Die Herstellung des Blei(II)-phosphits PbHPO₃ (siehe¹⁻⁵) und des Blei(II)-dihydrogendiorthophosphits PbH₄P₂O₆ (siehe^{4,5}) wurde bereits beschrieben und beide Substanzen wurden mittels der Pulverröntgenogramme charakterisiert^{5,6}. Das Infrarotspektrum des orthorhombischen PbHPO₃ wurde von Corbridge und Love⁷ angeführt und mit der Kenntnis der Raumgruppe dieser Substanz ($D_{2h}^{17}Cmcm$) weiter eingehend von Muck, Jelínek und Hájek^{8,9} erörtert. Durch die Isothermalzersetzung von PbH₄P₂O₆ bei 150°C im Vakuum und über einem Sikkativ wurde Blei(II)-diphosphit PbH₂P₂O₅ hergestellt⁴. Diese Substanz kann jedoch lediglich bei langandauerndem Erhitzen von PbH₄P₂O₆ auf 170–190°C gewonnen werden¹⁰. Gegenstand der vorliegenden Arbeit war die Untersuchung des Systems PbHPO₃— —H₃PO₃—H₂O auf Grund der Löslichkeit, Röntgenographie, thermischen Analyse und Infrarotmolekülspektroskopie.

EXPERIMENTELLER TEIL

Chemikalien und analytische Methoden. Mittels Reaktion von Phosphortrichlorid mit H_2O und D_2O wurde phosphorige Säure H_3PO_3 und D_3PO_3 hergestellt. Blei(II)-phosphit, PbHPO₃,

^{*} XXIV. Mitteilung in der Reihe Herstellung und Untersuchung von Phosphiten; XXIII. Mitteilung: diese Zeitschrift 41, 23 (1976).

Blei(II)-phosphite

wurde durch Fällen einer 20% igen wäßrigen H_3PO_3 -Lösung mit der stöchiometrischen Menge einer 20% igen Pb(NO₃)₂-Lösung, Waschen des Produktes mit Wasser bis zur neutralen Reaktion des Filtrats und Trocknen an der Luft bei Raumtemperatur gewonnen⁵. Bei Verwendung von D_3PO_3 wurde analog voll deuterisiertes Blei(II)-phosphit, PbDPO₃ hergestellt. Das Phosphit PbH₄P₂O₆ wurde als feste Phase aus dem Kristallisationsfeld II des untersuchten Löslichkeitsdiagramms isoliert. Das voll deuterisierte Phosphit PbD₄P₂O₆ wurde als feste Phase aus dem mit 4g PbDPO₃, 4g D₃PO₃ und 2g D₂O gebildeten heterogenen System isoliert. Die Produkte wurden mit was serfreiem Methanol und Äther gewaschen und im Exsikkator über P₂O₅ aufbewahrt. Sämtliche Manipulationen mit den deuterisierten Präparaten wurden unter Ausschluß von Luftfeuchtigkeit durchgeführt.

Blei wurde nach Lösen der Probe in der Minimalmenge von Perchlorsäure komplexometrisch durch Rücktitration mit einer $Pb(NO_3)_2$ -Lösung in Gegenwart von Xylenolorange in einer mit Urotropin gepufferten Lösung bestimmt^{11,12}. Phosphit wurde auf Grund der modifizierten Methode von Nassler¹³ im HClO₄-Medium ohne Verwendung eines Katalysators bestimmt. Zur Oxydation der Probe mit dem Vierfachen der theoretischen Menge der Kaliumpermanganatmaßlösung genügt vollkommen ein dreißigminutiges Abstehenlassen.

Physikalisch-chemische Messungen. Die Löslichkeitsuntersuchung wurde mittels der Schreinemakersschen Methode¹⁴ durchgeführt. Die Gleichgewichtseinstellung im gesamten Konzentrationsbereich dauerte ungefähr 100 Tage. Sie wurde durch Schütteln beschleunigt und durch Messen des Brechungsindexes der flüssigen Phase mit Hilfe des Abbé-Refraktometers und durch Analyse der flüssigen Phase kontrolliert.

Die röntgenographische Untersuchung wurde mittels des Debye-Scherrerschen Verfahrens mit Hilfe des Apparates "Mikrometa II" (Chirana) unter Verwendung einer Cu-Antikathode und eines Nickelfilters durchgeführt. Die Probe wurde bei einer Spannung von 30 kV und einer Stromstärke von 15 mA während 120 min aufgenommen. Die gewonnenen Röntgenogramme wurden mittels des Komparators (Chirana) mit einer Präzision von $\pm 0,1$ mm ausgewertet, die Intensitäten der Diffraktionslinien wurden visuell in einer Skala mit relativer Zehnergradeinteilung bewertet.

Die thermographische Untersuchung wurde unter Verwendung des Apparates "Derivatograph" (MOM, Budapest) mittels der Technik gleichzeitiger Kurvenaufzeichnung von DTA, GTA, DGTA und T im Temperaturbereich von 25-600°C und dem Temperaturprogramm von $2,5^{\circ}$ /min durchgeführt.

Die Infrarotspektren wurden mittels des Zeiss-Apparates "UR-20" im Bereich von 400 bis 4000 cm^{-1} einerseits in Nujol-Suspension, andererseits in Kaliumbromidtabletten (1-3 mg Probe auf 1 g KBr) gemessen.

ERGEBNISSE UND DISKUSSION

Löslichkeitsuntersuchung. Wie aus dem Löslichkeitsdiagramm (Abb. 1) ersichtlich ist, bildet sich im System PbHPO₃-H₃PO₃-H₂O bei 25°C das inkongruent lösliche Bleidihydrogendiorthophosphit PbH₄P₂O₆ (Kristallisationsfeld II). In den Kristallisationsfeldern I und III koexistieren im Gleichgewicht mit der gesättigten Lösung die entsprechenden Ausgangssubstanzen, H₃PO₃ und PbHPO₃. Die Kristallisationsfelder IV und V sind dreiphasig. Die flüssige Phase im Feld IV hat die Zusammensetzung 4,0% PbHPO₃ + 82,0% H₃PO₃ + 14,0% H₂O und im Feld V: 2,5% PbHPO₃ + 38,5% H₃PO₃ + 59,0% H₂O. Auf Grund des beschriebenen Löslichkeitsdiagramms wurden die Bedingungen zur Herstellung des Blei(II)-dihydrogendiorthophosphits, das bei einem 54 übersteigenden Molverhältnis P/Pb in der flüssigen Phase entsteht, erstmalig präzis definiert. Zufolge seiner inkongruenten Löslichkeit in Wasser zersetzt sich das Präparat durch Einwirkung von Luftfeuchtigkeit langsam zu PbHPO₃, weshalb es im Exsikkator über P₂O₅ aufbewahrt wurde.

Röntgenographie und thermische Analyse. Die Ergebnisse der röntgenographischen Untersuchung des PbHPO₃ und PbH₄P₂O₆ stehen in Übereinstimmung mit den Angaben von Gilli, Pulidori und Traverso⁵. Beim PbH₂P₂O₅ wurden folgende Netzebenenabstände ermittelt (die Werte sind in nm, die Intensitäten in Klammern angeführt):

0,76 (8) 0,69 (4) 0,47 (2) 0,43 (5) 0,40 (3) 0,35 (10) 0,33 (10) 0,31 (3) 0,297 (4) 0,276 (6) 0,258 (2) 0,240 (1) 0,216 (3) 0,209 (4) 0,198 (3) 0,195 (3) 0,189 (2) 0,185 (2) 0,179 (1) 0,175 (4) 0,167 (2) 0,164 (1) 0,158 (1) 0,136 (1) 0,131 (1) 0,117 (1).

Die Untersuchungsergebnisse der thermischen Zersetzung sind in Tabelle I zusammengefaßt. Das Bleidihydrogendiorthophosphit beginnt bereits von ungefähr 150°C an stark zu schäumen, wodurch sich die Reproduzierbarkeit der thermischen Analysenkurven verschlechtert. Dies kann jedoch teilweise durch Verdünnen der Probe mit Aluminiumoxid verhindert werden. Hierbei verläuft jedoch die PbH₄P₂O₆-Dehydratation nicht vollständig und das zu definierende Präparat des Bleidiphosphits PbH₂P₂O₅, kann erst durch Erhitzen von PbH₄P₂O₆ während 50 Stunden bei der Temperatur von 170°C gewonnen werden. Das Produkt ist mäßig hygroskopisch und wurde deshalb im Exsikkator über P₂O₅ aufbewahrt.

Infrarotmolekülspektroskopie. Die Infrarotmolekülspektren der untersuchten Phosphite und ihrer voll deuterisierten Analoga sind in den Tabellen II – IV angeführt. Die Werte der Wellenzahlschwingungsverhältnisse der leichten und deuterisierten

Авв. 1.

Löslichkeitsdiagramm im System $PbHPO_3 - -H_3PO_3 - H_2O$ bei 25°C

3208

Blei(II)-phosphite

TABELLE I

Thermische Zersetzung der untersuchten Blei(II)-phosphite ($\Delta m > 0...$ Gewichtszunahme, $\Delta m < 0...$ Gewichtsabnahme)

Substanz	$T, ^{\circ}C$ DTA GTA: $\Delta m, \%$		o Prozeß	
РЬНРОз	305	Oxydationsbeginn		
U	320	exo + 0.25	Oxydation	
	320-600	- +1,80	-	
PbH ₄ P ₂ O ₆	150	endo 1,46	0,30 H ₂ O	
(verdünntes Al_2O_3)	250	Oxydationsbeginn		
	305	exo —	Oxydation	
PbH ₂ P ₂ O ₅	260	Oxydationsbeginn		
	290	exo —	Oxydation	

TABELLE II

Infrarotspektrum von PbHPO₃ und PbDPO₃ (Wellenzahlen der Schwingungen in cm⁻¹) s Schwach, m mittel, st stark, b breite Bande, s sehr, sch Schulter, ν Valenzschwingung, δ Deformationsschwingung, γ nichtebene Deformationsschwingung.

 PbHPO ₃	PbDPO ₃	$\widetilde{\nu}(\mathrm{H})/\widetilde{\nu}(\mathrm{D})$	Zuordnung	
465 m	465 m	1.000)	· .	
500 s	500 s	1,000		
570 m	565 s	1,009	δ ΡΟ	
585 st	585 sch	1,000		
595 st	595 m	1,000		
970 m	970 m	1,000)		
1 035 st	1 040 s	0,995	νPO	
1 075 st	1 060 sch	1,014		
990 st	730 m	1,356)	\$ DI I	
1 020 sch	760 m	1,342)	0 PH	
2 365 sch	1 710 s	1.383)		
2 385 m	1 730 s	1.379	v PH	
2 500 m	1 780 s	1,404		

Präparate $\tilde{v}(H)/\tilde{v}(D)$ entsprechen den für andere Phosphite entsprechenden Werten^{15,16} und stehen bei der Valenzschwingung des OH(POH) im PbH₄P₂O₆-Spektrum (Tab. III) in guter Übereinstimmung mit den Ergebnissen von Novak, der auf die Korrelation der Werte $\tilde{v}(H)/\tilde{v}(D)$ und die Werte der Wellengrößen der OH--Valenzschwingungen aufmerksam machte¹⁷. Das Spektrum des Phosphits PbH₄. P₂O₆ zeugt von der Gegenwart einer starken Wasserstoffbindung zwischen den Sauerstoffatomen und den Hydroxylgruppen, die an zwei verschiedene Phosphoratome gebunden sind. Die Länge dieser Wasserstoffbindungen, also der Entfernung zwischen den Sauerstoffatomen in den Gruppen P-O-H…O-P, die einerseits auf Grund der Werte der Wellenzahlen der OH-Valenzschwingungen¹⁷⁻²⁰, andererseits auf Grund der Werte der Verhältnisse $\tilde{v}(H)/\tilde{v}(D)$ (siehe¹⁷) ermittelt wurden, zeigen sich im Bereich 0,255-0,260 nm. Damit reihen sich diese Bindungen zwischen

TABELLE III

Infrarotspektrum von $PbH_4P_2O_6$ und $PbD_4P_2O_6$

(Bedeutung der Symbole siehe Tab. II).

 PbH ₄ P ₂ O ₆	PbD ₄ P ₂ O ₆	$\tilde{v}(\mathrm{H})/\tilde{v}(\mathrm{D})$	Zuordnung
435 st	425 m	1,024]	
450 st	445 st	1,011	
475 sch	_		
485 st	480 m	1,010	δΡΟ
545 st	535 st	1,019	
565 st	565 sch	1,000	
800 sch	595 s	1,345)	γ OH(POH)
870 m	630 s	1,381)	
940 sst	935 sst	1,005	
1 030 sst	1 025 sst	1,005	νΡΟ
1 120 sst	1 115 sst	1,004 ^J	
1170 st	—		
1 010 sst	750 s	1,347	δ PH
1 240 m	880 m	1,409)	δ OH(POH)
1 670 m	1 240 sch	1,347)	
2 200 sch	2 000 sch	1,100)	
2 250 b, sst	2060 m, b	1,092	v OH(POH)
2 350 st, b	2 150 sch	1,093	• •
2 700 st, b	2080 m, b	1,298)	
2 460 st	1 760 m	1,398)	νPH
2 490 st	1 790	1,391)	

3210

die festesten, bei den Polyorthophosphiten bisher beobachteten Wasserstoffbindungen $ein^{15,21,22}$.

Die Untersuchung der Diphosphitschwingungsspektren wurden bisher im befriedigenden Maß nicht durchgeführt^{23,24} und es wurden daher die Infrarotmolekülspektren des PbH₂P₂O₅ gleichzeitig mit den Spektren der Diphosphite einiger weiterer zweiwertiger Metalle (Mg, Ca, Sr, Zn) untersucht²⁵. Im Vergleich mit den Phosphiten MHPO₃.n H₂O (M = Pb, Mg, Ca, Sr, Zn, n = 0-6) zeigen sich für die Diphosphite zwei charakteristischen Banden, die erste im Bereich von 660-680 cm⁻¹, die zweite im Bereich von 910-935 cm⁻¹. Diese Banden, die praktisch in diesem Bereich auch bei den Diphosphaten und Polyphosphaten²⁶⁻³² beobachtet wurden, können, analog wie bei diesen Verbindungen, der symmetrischen und antisymmetrischen Valenzschwingung der POP-Gruppe zugeordnet werden. Der Bereich der Valenzschwingung der PO-Gruppe bei den Diphosphiten ist gegenüber den Phosphiten MHPO₃.n H₂O nach den höheren Wellenzahlen hin verschoben, aber dennoch erfolgt hier noch eine Überdeckung mit dem Bereich der Deformationsschwingungen der PH-Gruppe. Die δ PH-Schwingungen können daher auf Grund des PbD₂P₂O₅-Spektrums (Tab. IV) verläßlich identifiziert werden.

PbH ₂ I	P_2O_5 $PbD_2P_2O_5$	$\tilde{\nu}(\mathrm{H})/\tilde{\nu}(\mathrm{D})$	Zuordnung
440) st 435 s	1,011)	
485	5s 485s	1,000	
500) s 500 scl	h 1,000}	δΡΟ
510) m 510 m	1,000	
555	m 555 st	1,000)	
670	0 m 670 s	1,000)	v _s POP
915	sst 915 sst	1,000	vas POP
1 040	st 1 040 st	1,000)	
1 110	sst 1 110 sst	1,000	v PO
1 170	sst 1 175 sst	0,996)	
1 010	m 725 s	1,393)	λ D LI
1 065	st 760 s	1,401∫	U I II
2 400	m —	-)	
2 460	m 1795 s	1,370	νPH
2 480	m 1800 s	1,378	

TABELLE IV Infrarotspektrum von $PbH_2P_2O_5$ und $PdD_2P_2O_5$ (Bedeutung der Symbole siehe Tab. II)

LITERATUR

- 1. Rammelsberg C.: Ann. Phys. Chem. 132, 489 (1867).
- 2. Rose H.: Ann. Phys. Chem. 9, 42, 221 (1827).
- 3. Wurtz C. A.: Ann. Chim. Phys. 16, 213 (1846).
- 4. Amat L.: Ann. Chim. Phys. 6, 24, 315 (1891).
- 5. Gilli G., Pulidori F., Traverso O.: Ann. Chim. (Paris) 56, 1449 (1966).
- 6. Gilli G., Pulidori F.: Ann. Chim. (Paris) 56, 1320 (1966).
- 7. Corbridge D. E. C., Love E. J.: J. Chem. Soc. 1954, 493.
- 8. Muck A., Jelínek J., Hájek B.: Sammelschrift der X. Ganzstaatlichen Konferenz über anorganische Chemie, S. 3, Košice 1975.
- 9. Muck A., Jelínek J., Hájek B.: diese Zeitschrift, im Druck.
- 10. Nassler J.: Nichtpublizierte Ergebnisse.
- 11. Emr A., Körbl J., Přibil R.: Chem. Listy 50, 1440 (1956).
- 12. Emr A., Körbl J., Přibil R.: diese Zeitschrift 22, 961 (1967).
- 13. Nassler J.: diese Zeitschrift 28, 3424 (1963).
- 14. Schreinemakers F. A. H.: Z. Phys. Chem. (Leipzig) 55, 71 (1906); 9, 57 (1892).
- 15. Ebert M., Kavan L.: Monatsh. Chem. 106, 1499 (1975).
- 16. Barnoyer B., Brun G., Maurin M.: Rev. Chim. Miner. 7, 941 (1970).
- 17. Novak A.: Structure and Bonding 18, 177 (1974).
- 18. Efimov J. J., Naberuchin J. I.: Zh. Strukt. Khim. 12, 591 (1971).
- 19. Pimentel G. C., Sederholm C. H.: J. Chem. Phys. 24, 639 (1956).
- 20. Pirenne J.: Physica (Utrecht) 21, 971 (1955).
- 21. Ebert M., Pelikánová M.: Monatsh. Chem. 105, 11 (1974).
- 22. Ebert M., Eysseltová J.: Monatsh. Chem. 105, 1030 (1974).
- 23. Remy H., Falius H.: Naturwiss. 43, 177 (1956).
- 24. Baudler M.: Z. Naturforsch. 12B, 347 (1957).
- 25. Ebert M., Pelikánová M.: Nichtpublizierte Ergebnisse.
- 26. Bues W., Gehrke H. W.: Z. Anorg. Allg. Chem. 288, 291 (1956).
- 27. Simon A., Richter H.: Z. Anorg. Allg. Chem. 301, 154 (1959).
- 28. Steger E., Leukroth G.: Z. Anorg. Allg. Chem. 303, 169 (1960).
- 29. Bergmann E. D., Littauer V. Z., Pinchas S.: J. Chem. Soc. 1952, 847.
- 30. Bues W., Gehrke H. W.: Z. Anorg. Allg. Chem. 288, 307 (1956).
- 31. Palmer W. G.: J. Chem. Soc. 1961, 1552.
- 32. Holmsted B., Larson L.: Acta Chem. Scand. 5, 1179 (1951).

Übersetzt von K. Grundfest.